Group of Dr. Jagau - Faculty for Chemistry and Pharmacy


Publications in peer-reviewed scientific journals

25. J. Lyle, T.-C. Jagau, R. Mabbs: Spectroscopy of temporary anion states: Renner-Teller coupling and electronic autodetachment in copper difluoride anion, Faraday Discuss., accepted (2019).
24. S. Gulania, T.-C. Jagau, A.I. Krylov: EOM-CC guide to Fock space travel: The C2 edition, Faraday Discuss., accepted (2018).
23. Z. Benda, T.-C. Jagau: Locating exceptional points on multidimensional complex-valued potential energy surfaces, J. Phys. Chem. Lett. 9, 6978-6984 (2018).
22. J. Lyle, S. R. Chandramoulee, J. Hamilton, B. Traylor, T. Guasco, T.-C. Jagau, R. Mabbs: Characterization of the vibrational properties of copper difluoride anion and neutral ground states via direct and indirect photodetachment spectroscopy, J. Chem. Phys. 149, 084302/1-8 (2018).
21. Z. Benda, T.-C. Jagau: Understanding processes following resonant electron attachment: Minimum-energy crossing points between anionic and neutral potential energy surfaces, J. Chem. Theory Comput., 14, 4216-4223 (2018).
20. T.-C. Jagau: Coupled-cluster treatment of molecular strong-field ionization, J. Chem. Phys. 148, 204102/1-9 (2018).
19. Z. Benda, K. Rickmeyer, T.-C. Jagau: Structure optimization of temporary anions, J. Chem. Theory Comput. 14, 3468-3478 (2018).
18. T.-C. Jagau: Non-iterative triple excitations in equation-of-motion coupled-cluster theory for electron attachment with applications to bound and temporary anions, J. Chem. Phys. 148, 024104/1-9 (2018).
17. Z. Benda, T.-C. Jagau: Analytic gradients for the complex absorbing potential equation-of-motion coupled-cluster method, J. Chem. Phys. 146, 031101/1-5 (2017).
16. T.-C. Jagau, K. B. Bravaya, A. I. Krylov: Extending quantum chemistry of bound states to electronic resonances, Annu. Rev. Phys. Chem. 68, 525-553 (2017).
15. T.-C. Jagau: Investigating tunnel and above-barrier ionization using complex-scaled coupled-cluster theory, J. Chem. Phys. 145, 204115/1-14 (2016).
14. T.-C. Jagau, A. I. Krylov: Characterizing metastable states beyond energies and lifetimes: Dyson orbitals and transition dipole moments, J. Chem. Phys. 144, 054113/1-10 (2016).
13. T.-C. Jagau, D. B. Dao, N. S. Holtgrewe, A. I. Krylov, R. Mabbs: Same but different: Dipole-stabilized shape resonances in CuF- and AgF-, J. Phys. Chem. Lett. 6, 2786-2793 (2015).
12. Y. Shao et al.: Advances in molecular quantum chemistry contained in the Q-Chem 4 program package, Mol. Phys. 113, 184-215 (2015).
11. T.-C. Jagau, A. I. Krylov: Complex absorbing potential equation-of-motion coupled-cluster method yields smooth and internally consistent potential energy surfaces and lifetimes for molecular resonances, J. Phys. Chem. Lett. 5, 3078-3085 (2014).
10. D. Zuev, T.-C. Jagau, K. B. Bravaya, E. Epifanovsky, Y. Shao, E. Sundstrom, M. Head-Gordon, A. I. Krylov: Complex absorbing potentials within EOM-CC family of methods: Theory, implementation, and benchmarks, J. Chem. Phys. 141, 024102/1-19 (2014).
9. T.-C. Jagau, D. Zuev, K. B. Bravaya, E. Epifanovsky, A. I. Krylov: A fresh look at resonances and complex absorbing potentials: Density matrix-based approach, J. Phys. Chem. Lett. 5, 310-315 (2014).
8. T.-C. Jagau, J. Gauss, K. Ruud: Analytic evaluation of the dipole Hessian matrix in coupled-cluster theory, J. Chem. Phys. 139, 154106/1-8 (2013).
7. A. Köhn, M. Hanauer, L. A. Mück, T.-C. Jagau, J. Gauss: State-specific multireference coupled-cluster theory, WIREs Comput. Mol. Sci. 3, 176-197 (2013).
6. T.-C. Jagau, J. Gauss: Linear-response theory for Mukherjee's multireference coupled-cluster method: Excitation energies, J. Chem. Phys. 137, 044116/1-16 (2012).
5. T.-C. Jagau, J. Gauss: Linear-response theory for Mukherjee's multireference coupled-cluster method: Static and dynamic polarizabilities, J. Chem. Phys. 137, 044115/1-14 (2012).
4. T.-C. Jagau, J. Gauss: Ground and excited state geometries via Mukherjee's multireference coupled-cluster method, Chem. Phys. 401, 73-87 (2012).
3. T.-C. Jagau, E. Prochnow, F. A. Evangelista, J. Gauss: Analytic gradients for Mukherjee's multireference coupled-cluster method using two-configurational self-consistent field orbitals, J. Chem. Phys. 132, 144110/1-9 (2010).
2. T.-C. Jagau, I. P. Roof, M. D. Smith, H.-C. zur Loye: Crystal growth, structural properties and photophysical characterization of Ln4Na2K2M2O13 (M=Nb, Ta; Ln=Nd, Sm, Eu, Gd), Inorg. Chem. 48, 8220-8226 (2009).
1. I. P. Roof, T.-C. Jagau, W. G. Zeier, M. D. Smith, H.-C. zur Loye: Crystal growth of a new series of complex niobates, LnKNaNbO5 (Ln=La, Pr, Nd, Sm, Eu, Gd, and Tb): structural properties and photoluminescence, Chem. Mater. 21, 1955-1961 (2009)

Further publications

5. A. M. Burow, T.-C. Jagau: 11. Kongress der World Association of Theoretical and Computational Chemists 2017 (WATOC 2017) in München, Information Theoretische Chemie 2018, 3-8.
4. T.-C. Jagau, A. M. Burow: 11. WATOC-Kongress: Über 1500 Theoretische Chemiker trafen sich in München, Nachrichten aus der Chemie 66 (2018).
3. T.-C. Jagau: Notes from the Falling Walls Conference 2011: Can chemistry be green?, Journal of Unsolved Questions 2, VII-VIII (2012).
2. L. A. Mück, T.-C. Jagau: Mehr Offenheit wagen, Nachrichten aus der Chemie 59, 807 (2011).
1. T.-C. Jagau: What is the best multireference coupled-cluster method?, Journal of Unsolved Questions (JUnQ) 1, OQ 4-7 (2011).